NS8220 300mW 双声道耳机音频放大器

1 特性

- 工作电压范围 1.8-5.0V
- 输出无需隔直电容
- 输出功率:

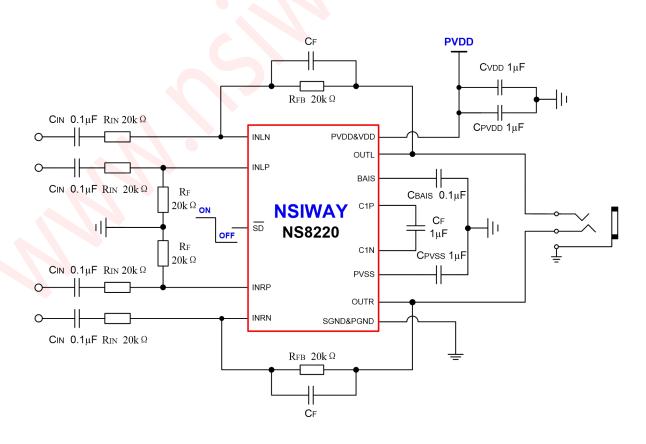
320mW@4.2V、R_L=16 Ω 、THD+N=10%; 220mW@4.2V、R_L=16 Ω 、THD+N=1%; 210mW@4.2V、R_L=16 Ω 、THD+N=0.1%; 160mW@4.2V、R_L=32 Ω 、THD+N=0.1%;

- 待机电流 2.7mA@3.6V
- 关断模式漏电流: 0.1uA(典型)
- PUMP 启动时间 4.5ms@1.8V
- SD 管脚低电平关断模式
- 外置反馈电阻和输入电阻,增益可调
- 采用 QFN3x3-16L 封装

4 典型应用电路

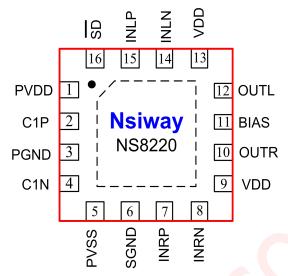
2 应用范围

- 便携式耳机
- 智能穿戴
- 无线麦克风等


3 说明

NS8220 是一款差分/单端输入,输出无需隔直 电容,能直接输出驱动的耳机放大器。客户可以通 过外置输入电阻和反馈电阻灵活设置增益。

芯片内部集成有电荷泵模块,通过产生的负电 压驱动输出,使得输出偏置在零电位,无需输出隔 直电容,应用更加方便。


NS8220 可以通过 SD 控制引脚进入低功耗关断模式,从而减少功耗。

NS8220 提供 QFN3x3-16L 封装,额定的工作温度范围为-40℃至 85℃。

5 管脚配置

NS8220-QFN3X3X0.75-16L 的管脚图如下图所示:

编号	管脚名称	管脚描述		
1	PVDD	电荷泵模块电源输入脚,接 1uF 电容到 PGND。		
2	C1P	电荷泵飞电容正极脚,接 1uF 电容到 C1N。		
3	PGND	功率地,PGND 和 SGND 一起连接到芯片热焊盘。		
4	C1N	电荷泵飞电容正极脚,接 1uF 电容到 C1P。		
5	PVSS	电荷泵模块输出脚,接 1uF 电容到 PGND。		
6	SGND	主控模块信号地。SGND 和 PGND 一起连接到芯片热焊盘。		
7	INRP	右声道输入正极		
8	INRN	右声道输入负极		
9	VDD	主控供电输入脚 1,接 1uF 电容到 SGND。VDD 和 PVDD 引脚连接在一起。		
10	OUTR	右声道输出脚		
11	BIAS	主控模块旁路节点,接 0.1uF 电容到 SGND。		
12	OUTL	左声道输出脚		
13	VDD	主控供电输入脚,接 1uF 电容到 SGND。VDD 和 PVDD 引脚连接在一起。		
14	INLN	左声道输入正极		
15	INLP	左声道输入负极		
16	$\overline{\mathrm{SD}}$	工作模式控制脚,SD接低电平时关断模式,SD接高电平时正常工作模式。		
-	地焊盘	连接 PGND 和 SGND。		

6 极限工作参数

参数	最小值	最大值	单位	说明
电源电压 PVDD/VDD	-0.3	6.0	V	
电源电压 PVSS/BAIS	-5.5	+0.3	V	
INRP/INRN/INLP/INLN	-5	+5	V	
SD	-0.3	6.0	V	
OUTL/OUTR	-5	+5	V	
环境温度	-40	85	°C	
最大结温 T _{JMAX}		150	°C	
引脚温度 (焊接)		260	°C	15 秒内
储存温度	-65	150	°C	
ESD 电压	±4000		V	нвм

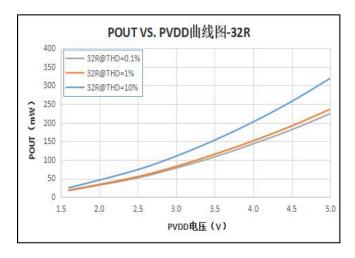
注:超过上述极限工作参数范围可能导致芯片永久性的损坏。长时间暴露在上述任何极限条件下可能会影响芯片的可靠性和寿命。

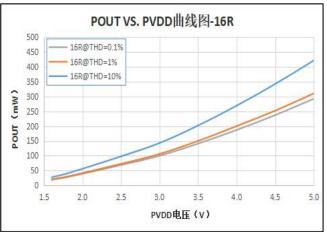
7 内部框图

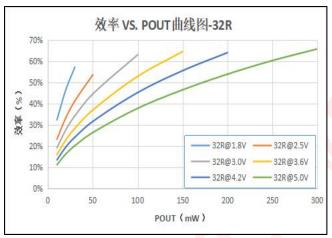
8 电气特性

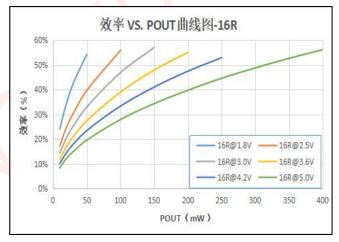
工作条件(除非特别说明): Ta=25 $^{\circ}$ C, PVDD=VDD=4.2V, R_{IN} =R_F=20k $^{\Omega}$, Gain=1, C_F=1uF, C_{PVDD}=C_{PVSS}=C_{VDD}=1uF, C_{BAIS}=0.1uF, R_L=32 $^{\circ}$ C

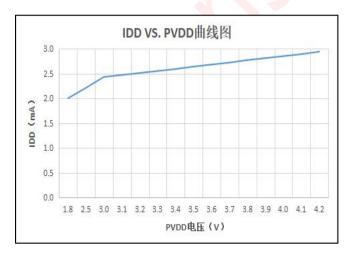
符号	参数	测试条件	最小值	标准值	最大值	单位
V_{PVDD}	电源电压		1.8		5.0	V
I _{PVDD}	电源静态电流	V _{IN} =0V, Io=0A		3		mA
I _{SD}	关断漏电流	SD=0V		0.1		μΑ
UVLO	欠压锁存阈值	PVDD 上升			1.6	V
	Pump 启动时间	PVDD=1.8V		4.5		
T_{ON_PUMP}		PVDD=5.0V		3.8		ms
F _{PUMP}	Pump 开关频率			500		kHz
		THD+N=0.1%, f=1KHz,				
		RL=32Ω, PVDD=1.8V		25		
		RL=32Ω, PVDD=3.7V		120		
		RL=32Ω, PVDD=4.2V		160		mW
		RL=16Ω, PVDD=1.8V		30		
		RL=16Ω, PVDD=3.7V		160		
		RL=16Ω, PVDD=4.2V		210		
		THD+N=1%, f=1KHz				
		RL=32Ω, PVDD=1.8V		25		
		RL=32Ω, PVDD=3.7V		120		
Po	输出功率	RL=32Ω, PVDD=4.2V		170		mW
	. 1/1 0	RL=16Ω, PVDD=1.8V		30		
		RL=16Ω, PVDD=3.7V		160		
		RL=16Ω, PVDD=4.2V		220		
		THD+N=10%, f=1KHz				
		RL=32Ω, PVDD=1.8V		37		
		RL=32Ω, PVDD=3.7V		180		
		RL=32Ω, PVDD=4.2V		230		mW
		RL=16Ω, PVDD=1.8V		44		
		RL=16Ω, PVDD=3.7V		250		
		RL=16Ω, PVDD=4.2V		320		
VOS	输出失调电压			±500		uV

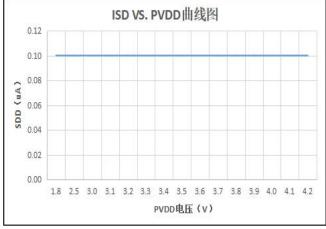


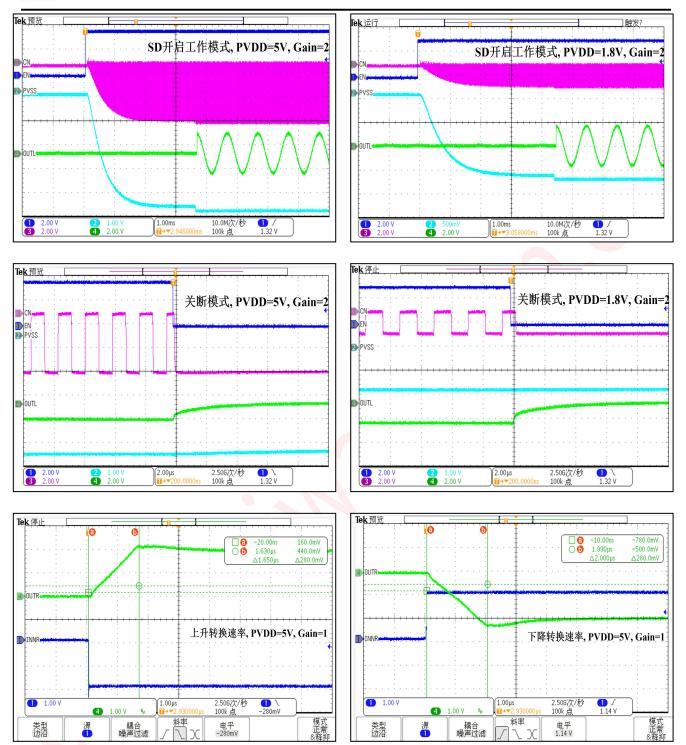

	总失真度+噪声	GAIN=1, 20Hz≤f≤20KHz					
THD+N		RL=32Ω,P ₀ =20mW, PVDD=4.2V		0.005		%	
		RL=16Ω,P ₀ =20mW, PVDD=4.2V		0.008			
V_{Noise}	底噪	GAIN=1, PVDD=4.2V, AWT		10		uV	
C/NID	信噪比	GAIN=1, 20Hz≤f≤20KHz, AWT				-15	
S/NR		RL=32Ω, P _O =20mW, PVDD=4.2V		96		dB	
	串扰	1kHz, P ₀ =20mW, , PVDD=4.2V					
V _{Cross}		RL=32Ω		80		dB	
∨ Cross		10kHz, P ₀ =20mW, , PVDD=4.2V					
		RL=32Ω		85	10		
V _{IH_SD}	sD输入高电平	VDD=4.2V	1		VDD	V	
V _{IL_SD}	SD输入低电平	VDD=4.2V	0		0.5	V	
_	功放启动时间	PVDD=1.8V		4.8			
T _{OP_TOTAL}		PVDD=5.0V		3.8		ms	
C _{L_MAX}	最大容性驱动量	RL=32Ω		330		pF	
R _F	反馈电阻范围		4.7	20	100	kΩ	
SR _{ON}	上升转换速率			0.8		V/us	
SR _{OFF}	下降转换速率			1.0		v/us	

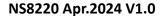


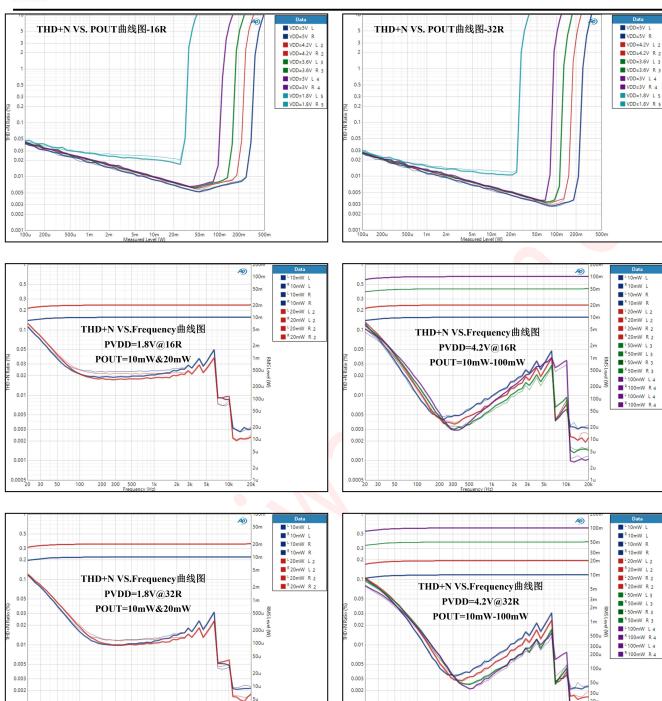

9 典型特性曲线


下列特性曲线中(除非指定条件),T_A=25℃, PVDD=VDD, R_{IN} =R_F=20kΩ, Gain=1, C_F=1uF, C_{PVDD}=C_{PVSS}=C_{VDD}=1uF, C_{BAIS}=0.1uF。









100

200 300 500 1k Frequency (Hz) 2k 3k 5k

50 100

200 300 500 1k Frequency (Hz) 2k 3k 5k

10k

10 应用说明

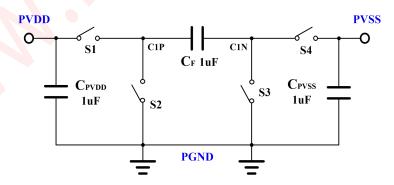
10.1 芯片基本结构描述

NS8220 是一款双路输入双路输出耳机类音频功率放大器。芯片内部集成有运算放大器、音频处理控制器和电荷泵模块等,通过电荷泵产生负电压驱动输出,使得输出偏置在零电位,所以输出无需隔直电容,应用更加方便。芯片应用时需要外置输入电阻和反馈电阻来设定所需增益,外置电阻便于客户灵活调整。

NS8220 是单端供电方式,一般应用中将 PVDD 和 VDD 连接在一起。在 1.8V-5.0V 电压之间可以正常工作。芯片还有 \overline{SD} 控制引脚,若 \overline{SD} 电压为低电平时芯片处于关断模式,若 \overline{SD} 电压为高电平时处于工作模式。

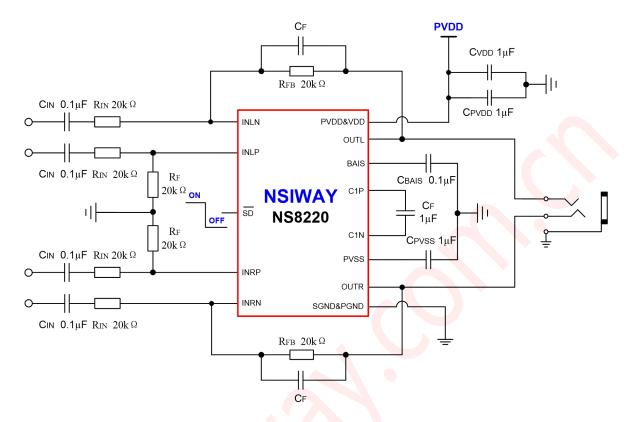
9.2 增益配置

如应用图示,运算放大器的增益由外部电阻 R_F 和 R_{IN} 决定,其增益计算公式为: $Gain = \frac{R_F}{R_{IN}}$ 。推荐输入电阻设定为 $10k\Omega$,电阻精度在 $\pm 1\%$ 内。 R_F 反馈电阻推荐阻值范围在 $10k\Omega$ - $100k\Omega$ 之间。

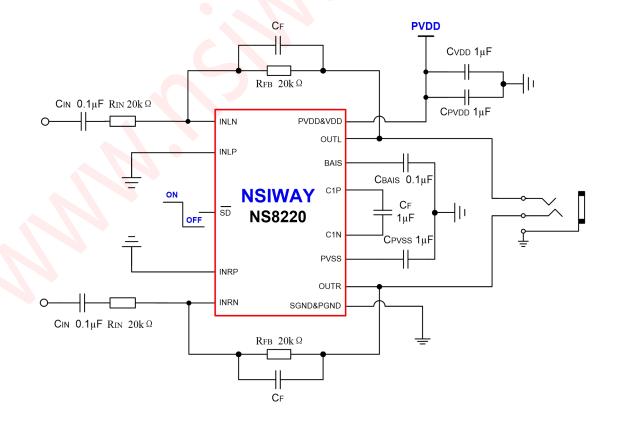

9.3 输入电容配置

实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz 的低频语音。输入耦合电容 C_N (与

$$R_{IN}$$
形成一阶高通滤波器)决定了低频响应,计算公式为: $fc = \frac{1}{2\pi \cdot R_{IN} \cdot C_{IN}}$ 。

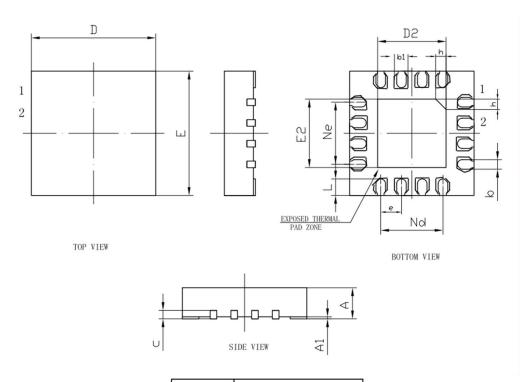

9.4 电荷泵电路

芯片內置有电荷泵模块,可以在 PVSS 引脚产生一个负电压来驱动输出管,使得输出偏置电位在 0V,可以无需输出隔直电容即可实现信号输出。电荷泵的基本原理如下图所示,在 S1 和 S3 闭合时 PVDD 对飞电容充电。此时 VC1P 为 PVDD,而 VC1N 为 PGND。



在 S2 和 S4 闭合,S1 和 S3 断开时,由于飞电容两端电压不能突变,因此 PVSS 输出电压为-PVDD。实现了负电压转换。此时 VC1P 为 PGND,而 C1N=PVSS=-PVDD。

9.4 差分输入应用


9.5 单端输入应用图

10

10 封装信息

QFN3X3X0.75-16L 封装

SYMBOL	MILLIMETER			
STWBOL	MIN	MID	MAX	
A	0.70	0.75	0.80	
A1	0	0.02	0.05	
b	0.18	0.25	0.30	
b1	0.30	0.35	0.40	
С	0. 18	0.20	0. 25	
D	2. 90	3. 00	3. 10	
D2	1.55	1.65	1.75	
e	0. 50BSC			
Ne	1. 50BSC			
Nd	1. 50BSC			
Е	2. 90	3.00	3. 10	
E2	1. 55	1.65	1.75	
L	0.35	0.40	0. 45	
h	0. 20	0. 25	0. 30	
L/F载体尺寸 (mil)	75x75			

11 版本修改历史

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。